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CHAPTER 5: CAPACITORS AND INDUCTORS 
 
5.1 Introduction 
 
• Unlike resistors, which dissipate energy, capacitors 

and inductors store energy. 
• Thus, these passive elements are called storage 

elements. 
 
5.2 Capacitors 
 
• Capacitor stores energy in its electric field. 
• A capacitor is typically constructed as shown in 

Figure 5.1. 

 
     Figure 5.1 
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• When a voltage v is applied, the source deposits a 

positive charge q on one plate and negative charge –q 
on the other. 

 
Figure 5.2 

• The charge stored is proportional to the applied 
voltage, v 

Cvq =        (5.1) 

where C is the constant of proportionality, which is 
known as the capacitance of the capacitor. 

• Unit for capacitance: farad (F). 

A capacitor consists of two conducting plates 
separated by an insulator (or dielectric) 
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• Definition of capacitance: 
 
 
 
 
 
• Capacitance is depends on the physical dimensions 

of the capacitor. 
• For parallel-plate capacitor, capacitance is given by 

d
A

C
∈=       (5.2) 

where A is the surface area of each plate 

  d is the distance between the plates 

∈ is the permittivity of the dielectric material 
between the plates 

• The symbol of capacitor: 

 

     Figure 5.3 

Capacitance is the ratio of the charge on one plate 
of a capacitor to the volatge difference between the 

two plates. 
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• The current flows into the positive terminal when the 
capacitor is being charged. 

• The current flows out of the positive terminal when 
the capacitors is discharging. 

• Differentiating both sides of Equation 5.1, 

dt
dv

C
dt
dq =  

Thus, 

   
dt
dv

Ci =       (5.3) 

• Capacitors that satisfy Equation 5.3 are said to be 
linear. 

• The voltage-current relation: 

∫ ∞−= t dtti
C

v )(
1

 

)()(
1

0
0

tvdtti
C

v t

t
+= ∫    (5.4) 

where Ctqtv )()( 00 =  is the voltage across the 

capacitor at time to. 

• Thus, the capacitor voltage is depends on the past 
history of the capacitor current – has memory. 
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• The instantaneous power given by: 

dt
dq

Cvvip ==      (5.5) 

• The energy stored given by: 
t

t

ttt CvvdvCdt
dt
dv

vCpdtw
−∞=

∞−∞−∞−
==== ∫∫∫ 2

2
1

 
Note that 0)( =−∞v  because the capacitor was 

uncharged at −∞=t . 
Thus, 

   
C

q
Cvw

22
1 2

2 ==     (5.6) 

• Four issues: 
(i) From Equation 5.3, when the voltage across a 

capacitor is not changing with time (i.e., dc 
voltage), the current through the capacitor is 
zero. 

 
 
(ii) The voltage on the capacitor must be 

continuous. The capacitor resists an abruot 
change in the voltage across it. According to 

A capacitor is an open circuit to dc. 
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Equation 5.3, discontinuous change in voltage 
requires an infinite current, which is 
physically impossible. 

(iii) The ideal capacitor does not dissipate energy. 
(iv) A real, nonideal capacitor has a parallel-model 

linkage resistance. 

 
Figure 5.4 

• Example 1: 
The voltage across a Fµ5 capacitor is 

   ttv 6000cos10)( = V 

Calculate the current through it. 
 

 ( )t
dt
d

dt
dv

Cti 6000cos10105)( 6−×==  

t

tti

6000sin3.0

6000sin106000105)( 6

−=

×××−= −
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• Example 2: 
An initially charged 1-mF capacitor has the current 
as shown in Figure 5.5. Calculate the voltage across 
it at t = 2 ms and t = 5 ms. 

 
Figure 5.5 

The current waveform can be described 
mathematically as: 
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For t = 5 ms: 
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5.3 Series and Parallel Capacitors 
 
• Consider the circuit as shown in Figure 5.6 with N 

capacitors in parallel: 

 
Figure 5.6 

Applying KCL: 

   Niiii +++= ...21  

But, 

   
dt
dv

Ci kk =  

Hence, 

   

dt
dv

C
dt
dv

C

dt
dv

C
dt
dv

C
dt
dv

Ci

eq

N

k
k

N

=


=

+++=

∑
=1

21 ...
 

where, 

   Neq CCCC +++= ...21    (5.7) 
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• Consider the circuit as shown in Figure 5.7 with N 
capacitors in series: 

 
     Figure 5.7 

Applying KVL, 

   Nvvvv +++= ...21  

But, 

   )()(
1

0
0

tvdtti
C

v k
t

t
k

k += ∫  

Thus, 
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)(...)()(

)(
1

...
11

00201

21
0

tvtvtv

dtti
CCC

v

N

t

t
N

++++






 +++= ∫
 

 )()(
1

0
0

tvdtti
C

v t

t
eq

+= ∫  

where, 

   
Neq CCCC

1
...

111

21

+++=   (5.8) 

• Example: 
Find the equivalent capacitance seen at terminals of 
the circuit in Figure 5.8. 

 
Figure 5.8 



NAMI @PPKEE,USM                                                              EEE105:  CI RCUI T THEORY 
 

 113

 
( )( )

F

Ceq

µ

µµµµµ

40

1206020)7050(

=

++=
 

• Example 2: 
Find the voltage across each of the capacitors in 
Figure 5.9. 

 
     Figure 5.9 

  
( ) ( )( )

FC

C

eq

eq

µ
µµµµ

20

30602040

=

+=
 

The total charge, 

  36 102.1601020 −− ×=××== vCq eq C 

  30
1040
102.1

6

3

1
1 =

×
×==∴ −

−

C
q

v V 

Using KVL, 
  2160 vvV +=  

  302 =∴v V 
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For Loop 2: 

  432 vvv +=  

But, 

  230602 vCqLoop µµ=  

  106.0)30)(1020( 6
2 ×=×= −

Loopq C 

  10
1060
106.0

6

3

3

2
3 =

×
×== −

−

C

q
v Loop V 

  20324 =−= vvv V 
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5.4 Inductors 
 
• Inductor is a pasive element designed to store energy 

in its magnetic field. 
• Any conductor of electric current has inductive 

properties and may be regarded as an inductor. 
• To enhance the inductive effect, a practical inductor 

is usually formed into a cylindrical coil with many 
turns of conducting wire. 

 

 
Figure 5.10 

 
 

• If the current passes through an inductor, the voltage 
across the inductor is proportional to the time of 
change of the current. 

 

An inductor consists of a coil of conducting wire. 
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• In mathematical form: 

dt
di

Lv =        (5.9) 

where L is the constant of proportinality called the 
inductance of the inductor. 

• The unit of inductance is henry (H). 
 
 
 
 
• The inductance depends on inductor’s physical 

dimension and construction, which is given by: 

l
AN

L
µ2

=       (5.10) 

where N is the number of turns 

  l is the length 

  A is the cross sectional area 

  µ  is the permeability of the core 

 

 

Inductance is the property whereby an inductor 
exhibits opposition to the charge of current 

flowing through it 
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• The symbol of inductor: 

 

Figure 5.11 
• The current-voltage relationship: 

vdt
L

di
1=  

Intergrating gives, 

   ∫ ∞−= t dttv
L

i )(
1

 

or 

   )()(
1

o
t

t
tidttv

L
i

o
+= ∫    (5.11) 

where )( oti  is the total current for ott <<∞−  

0)( =−∞i . (Note: there must be a time in the 

past when there was no current 
in the inductor.) 
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• The inductor stores energy in its magnetic field. 
• The power delivered to the inductor: 

 i
dt
di

Livp 




==     (5.12) 

• The energy stored: 

∫∫ ∞−∞− 




== tt idt

dt
di

Lpdtw  

)(
2
1

)(
2
1 22 −∞−== ∫ ∞− LitLiidiLw t

 

since 0)( =−∞i , 

   2

2
1

Liw =       (5.13) 

• 4 issues: 
(i) From equation 5.9, the voltage across an 

inductor is zero when the current is constant 
(i.e. dc source). 

 
 
(ii) An important property of the inductor is its 

opposition to the change in current flowing 
through it.  
 The current through an inductor cannot 

change instantaneously. 

An inductor acts like a short circuit to dc. 
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According to Equation 5.9, discontinuous 
change in current requires an infinite voltage, 
which is physically impossible. 

(iii) The ideal inductor does not dissipate energy. 
(iv) A real, nonideal inductor has a serial-model 

resistance. This resistance is called a winding 
resistance, Rw.  

 
Figure 5.12 

• Example 1: 
If the current through a 1 mH inductor is 

tti 100cos20)( =  mA, find the terminal voltage 

and the energy stored. 
 
The terminal voltage,  

 t
dt
di

Lv 100sin1002010 3 −×××== −  

 tv 100sin2−=  mV 
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The energy stored, 

 2332 )100cos1020)(10(
2
1

2
1

tLiw −− ×==  

 tw 100cos2.0 2=∴ µJ 

• Example 2: 
Consider the circuit as shown in Figure 5.13. under 
dc conditions, find (a) i, vc and iL, (b) the energy 
stored in the capacitor and inductor. 

 
Figure 5.13 

 
(a) Under dc condition; 

The capacitor – open circuit 
The inductor – short circuit 
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    Figure 5.14 
 
From Figure 5.14, 

  2
51

12 =
+

== Lii  A 

  10)5)(2(5 === ΩRiv Lc  V 

(b) The energy in the capacitor, 

50)10)(1(
2
1

2
1 22 === CC Cvw  J 

  The energy in the inductor, 

   4)2)(2(
2
1

2
1 22 === LL Liw  J 

 
 
 
 
 
 



NAMI @PPKEE,USM                                                              EEE105:  CI RCUI T THEORY 
 

 122

5.5 Series and Parallel Inductors 
 
• Consider the circuit as shown in Figure 5.15 with N 

inductors in series: 

 

Figure 5.15 
Applying KVL: 

   Nvvvv +++= ...21  

But, 

   
dt
di

Lv kk =  

Hence, 

   

dt
di

L
dt
di

L

dt
di

L
dt
di

L
dt
di

Lv

eq

N

k
k

N

=


=

+++=

∑
=1

21 ...
 

where, 

   Neq LLLL +++= ...21    (5.14) 
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• Consider the circuit as shown in Figure 5.16 with N 
inductors in parallel: 

 
     Figure 5.16 

Applying KCL, 

   Niiii +++= ...21  

But, 

   )()(
1

0
0

tidttv
L

i k
t

t
k

k += ∫  

Thus, 
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 )(
1

0
0

tivdt
L

i t

t
eq

+= ∫  

where, 

   
Neq LLLL

1
...

111

21

+++=      (5.15) 

• Example 1: 
Find the equivalent inductance of the circuit in 
Figure 5.17. 

 
Figure 5.17 

 

 ( )( )HHHHHHLeq 101220784 ++++=  

 HLeq 18=∴  
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• Example 2: 
For the circuit in Figure 5.18, 

)2(4)( 10teti −−= mA. If 1)0(2 −=i mA, find (a) 

)0(1i , (b) v(t), v1(t) and v2(t), (c) i1(t) and i2(t). 

 

 
Figure 5.18 

(a) From )2(4)( 10teti −−= mA, 

4)12(4)0( =−=i  mA 

  Since 21 iii += , 

   5)1(4)0()0()0( 21 =−−=−= iii mA 

(b) The equivalent inductance is 

51242 =+=eqL H 

  Thus, 

        t
eq e

dt
di

Ltv 10)10)(1)(4(5)( −−−== mV 

   tetv 10200)( −=∴  mV 
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  and 

   t
H e

dt
di

Ltv 10
21 )10)(4(2)( −−−== mV 

   tetv 10
1 80)( −=∴ mV 

  Since 21 vvv += , 

   tetvtvtv 10
12 120)()()( −=−= mV 

(c) The current i1 is obtained as, 

mAdte

idtvti

t t

t

5
4

120

)0(
4
1

)(

0
10

10 21

+=

+=

∫

∫

−
 

mAee

mAe
tt

tt

1010

0
10

38533

53
−−

−

−=++−=

+−=
 

  Similarly, 

 

mAdte

idtvti

t t

t

1
12

120

)0(
12
1

)(

0
10

20 22

−=

+=

∫

∫

−
 

mAee

mAe
tt

tt

1010

0
10

11

1
−−

−

−=−+−=

−−=
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5.6 Conclusion 

 


