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CHAPTER 5: CAPACITORS AND INDUCTORS
5.1 Introduction

e Unlike resistors, which dissipate energy, capacitors
and inductors store energy.

® Thus, these passive elements are called storage
elements.

5.2 Capacitors

e Capacitor stores energy in its electric field.

e A capacitor 1s typically constructed as shown in
Figure 5.1.

Dielectric with permittivity e

-

Metal plates,
each with area A

Figure 5.1
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A capacitor consists of two conducting plates
separated by an insulator (or dielectric)

e When a voltage v is applied, the source deposits a
positive charge g on one plate and negative charge —q
on the other.

+q B8

Figure 5.2

e The charge stored is proportional to the applied
voltage, v

q=Cvy (5.1)

where C is the constant of proportionality, which is
known as the capacitance of the capacitor.

e Unit for capacitance: farad (F).
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e Definition of capacitance:

Capacitance is the ratio of the charge on one plate
of a capacitor to the volatge difference between the
two plates.

e Capacitance is depends on the physical dimensions
of the capacitor.

¢ For parallel-plate capacitor, capacitance is given by

€A
C=——- 5.2
7 (5.2)

where A is the surface area of each plate
d 1s the distance between the plates

€ 1s the permittivity of the dielectric material
between the plates

e The symbol of capacitor:

Figure 5.3
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® The current flows into the positive terminal when the
capacitor is being charged.

® The current flows out of the positive terminal when
the capacitors is discharging.

¢ Differentiating both sides of Equation 5.1,

dq _ ~dv
dt dt
Thus,
dv
i=C=" 5.3
” (5.3)

e Capacitors that satisfy Equation 5.3 are said to be
linear.

e The voltage-current relation:

|
v=—| 1(t)dt
CL“()

v= % [ i@)dt +v(t,) (5.4)

where v(t,) =q(t,)/C is the voltage across the

capacitor at time f,.

e Thus, the capacitor voltage is depends on the past
history of the capacitor current — has memory.
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¢ The instantaneous power given by:

: dqg
=vi=Cv— 5.5
P r (5.5)

® The energy stored given by:

@ ot vz Lo
W= Lopd CJ vdtdt Cj_oovdV—sz

[=—oc0

Note that v(—o0) =0 because the capacitor was

uncharged at = —oo,
Thus,

w=—-Cyv =" (5.6)

® Four issues:

(1) From Equation 5.3, when the voltage across a
capacitor is not changing with time (i.e., dc
voltage), the current through the capacitor is
Zero.

A capacitor 1s an open circuit to dc.

(11) The voltage on the capacitor must be
continuous. The capacitor resists an abruot
change in the voltage across it. According to
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Equation 5.3, discontinuous change in voltage
requires an infinite current, which 1is
physically impossible.
(111) The ideal capacitor does not dissipate energy.
(iv) A real, nonideal capacitor has a parallel-model
linkage resistance.

i Leakage resistance

S

oA A A k-
T

Q

Capacitance

Figure 5.4
e Example 1:
The voltage across a S 1F capacitor is

v(t) =10cos 6000t v

Calculate the current through it.

i)=C% =5%10° % (10c0s 6000¢)
dt dt

i(1) =—=5x107° x6000x10sin 6000z
= —0.3s1n 6000¢
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¢ Example 2:
An i1nitially charged 1-mF capacitor has the current
as shown in Figure 5.5. Calculate the voltage across
itatr=2 ms and f = 5 ms.

[ (mA) A
100
0 ] | l 3>
2 4 6 t{(ms)
Figure 5.5

The current waveform can be described
mathematically as:

» 50emV  0<t<?2
l —
100mV r>2

For t = 2 ms:

V :lj’ 1(t)dt+v(t,) = 1_3 j250><10‘3t+v(0)
C o 107
3,22
b= 1_3 SOXI02 L 100 mv
10 2
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For t =5 ms:

v :%L;i(t)dt+v(t0)

1 i i
= (P50%10 ¢+ [[100x107 )+ v(0)

2
+100¢], W+ 0 =400mV

0 )

1 [50x107%¢°
V=
10
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5.3 Series and Parallel Capacitors

e Consider the circuit as shown in Figure 5.6 with N

capacitors in parallel:

[
|

&1
|
|

=
[
|
=

Figure 5.6

Applying KCL.:

But,

Hence,

where,

=i 4i,+..tiy

dv

lk:CkE
dv dv dv
i=C C,— C.,—
Ydr Cdt Nodr

C, =C+C,+...+C, (5.7)
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® Consider the circuit as shown in Figure 5.7 with N
capacitors in series:

e
I || || S |_ iy
I || |l -l
-}~ ﬂI — et T — el — S tliar i —

Figure 5.7
Applying KVL,
v=vy, +v,+..+v,
But,
.
v, = —L i()dt+v, (t,)
Thus,

y= ij’ i(t)dt+v,(t,) +if i(t)dt +v,(t,)
C, " C, "

2

+...+ij’ i(t)dt+v, (t,)
C, "
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S I "i(t)dt

_|_
Cl CZ CN
+v,(t,) + v, (t,) +...+ Vv (£,)
|
p= C—LO i(t)dr+v(t,)

eq
where,

=—+ .o+ — (5.8)

e Example:
Find the equivalent capacitance seen at terminals of
the circuit in Figure 5.8.

L

50 uF
| 60 uF
o= |
o ol
—  JOuF = 20uF == 120 uF
o

Figure 5.8
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C,, = (504 +701)|(20 + (604[1201))
=40uF
e Example 2:

Find the voltage across each of the capacitors in
Figure 5.9.

40 uF 60 uF
|| |
I |
+ 1:1 e + 1'..-'3 —
5 +

60 V ’ =c R M 30 uF

Figure 5.9
C,, = (40u)(20x +(604[301))
C,, =20uF
The total charge,
g=C,v=20x10"x60=12x10"C
-3
v = q _ 1.2><1()_6 — 30V
C, 40x10
Using KVL,
o0V =y, +v,

sy, =30V
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For Loop 2:
v, =V, +V,
But,
Dro0p2 = Coouson’>
G 100p> = (20x107°)(30) = 0.6x10C
V. = qL00p2 . O.6X10_3
oC,  60x10°

v, =v,—v, =20V
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5.4 Inductors

® Inductor is a pasive element designed to store energy
in its magnetic field.

e Any conductor of electric current has inductive
properties and may be regarded as an inductor.

e To enhance the inductive effect, a practical inductor
is usually formed into a cylindrical coil with many
turns of conducting wire.

Cross-sectional area, A

'<—Length, !-—-I

Core material

Number of turns, N

Figure 5.10

An inductor consists of a coil of conducting wire.

o [f the current passes through an inductor, the voltage
across the inductor is proportional to the time of
change of the current.
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e [n mathematical form:

di
v=L— 5.9
” (5.9)

where L 1s the constant of proportinality called the
inductance of the inductor.

e The unit of inductance 1s henry (H).

Inductance is the property whereby an inductor
exhibits opposition to the charge of current

flowing through it

® The inductance depends on inductor’s physical
dimension and construction, which is given by:

2
7= M

5.10
l (5.10)

where N is the number of turns
[ 1s the length
A 1s the cross sectional area

M 1s the permeability of the core
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¢ The symbol of inductor:

| | |

+
il v ” L L
Figure 5.11
® The current-voltage relationship:
|
di =—vdt
L

Intergrating gives,

1
i=—1| v(t)dt
LL“’()

or

i:%f v(t)dt +i(t,) (5.11)

where I(7) is the total current for —oo < ¢ <7_

1(—o0) = 0. (Note: there must be a time in the

past when there was no current
in the inductor.)
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¢ The inductor stores energy in its magnetic field.

® The power delivered to the inductor:

: [ dz»
p=1v= (5.12)
dt |

® The energy stored:

w= Lo pdt = oo( di »d

SRR B 2
w=L| idi=—Li“(t ——Ll —00
[Lidi=_ Li*()= Li* (=)

since i(—o0) =0,

w=—Li

5.13
5 (5.13)

e 4 issues:
(1)  From equation 5.9, the voltage across an
inductor 1s zero when the current i1s constant
(i.e. dc source).

An inductor acts like a short circuit to dc.

(11)  An important property of the inductor is its
opposition to the change in current flowing
through it.

The current through an inductor cannot
change instantaneously.
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According to Equation 5.9, discontinuous
change in current requires an infinite voltage,
which is physically impossible.
(1i1) The ideal inductor does not dissipate energy.
(iv) A real, nonideal inductor has a serial-model
resistance. This resistance is called a winding
resistance, R,,.

Figure 5.12
e Example 1:

If the current through a 1 mH inductor is
(1) =20co0s100f mA, find the terminal voltage

and the energy stored.

The terminal voltage,

Y= L% =107 x20x100x —sin 100z
4

vy =-=2s1n 100t mV
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The energy stored,

W= %Liz = %(10—3)(20><10—3 cos1001)°

- w=0.2cos” 100z W
e Example 2:

Consider the circuit as shown in Figure 5.13. under
dc conditions, find (a) i, v. and i;, (b) the energy
stored 1n the capacitor and inductor.

. [0 50
\——h—
l
%4

] L
Q

12v @ . 2H§

Figure 5.13

(a) Under dc condition;
The capacitor — open circuit
The inductor — short circuit
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12V
Ve
-7
Figure 5.14
From Figure 5.14,
o 12
=i, =——=2A
1+5

v.=R,=2)5)=10V
(b) The energy in the capacitor,

wczéﬁézéaxmﬂzsoJ

The energy in the inductor,

wizéujzégxf)=41
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5.5 Series and Parallel Inductors

e Consider the circuit as shown in Figure 5.15 with N
inductors in series:

oy Ly L, Ly
i
oO——FIN—T N — T - — T
P R R ToyT
i
o
Figure 5.15
Applying KVL:
V=v v, vy
But,
di
v, =L —
dt
Hence,
di di di
v=L —+L,—+..+L, —
dt dt dt
N di di
— Z Lk \_ — Leq '
k=1 )df dt
where,

L,=L+L +..+L, (5.14)
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e Consider the circuit as shown in Figure 5.16 with N
inductors in parallel:

]

—
o
-+ I-l } 132 ¢ .E.S *
4 L, Ly L,
o
Figure 5.16
Applying KCL,
=i 4i,+..tiy
But,
1 .
I, = T LO v(t)dr+i, (t,)
k
Thus,

A B . 1 .
Z:ELO va’t+zl(t0)+L—2LO vdt +1,(t,)

+...+Lij: vdt +1i, (t,)

N

(11 1\
[=| —+—+..+— | vdt
L L 7 Ly

+i, () +1,(t,) +...+1,(2,)
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N .
I :L—LO vdt +i(t,)

eq
where,
1 1 1 1
== f +...+— (5.15)
Leq l‘l L2 LN

e Example 1:

Find the equivalent inductance of the circuit in
Figure 5.17.

4H 20 H
L
B (A8 7H 12 H
G, =]
S H 10 H
Figure 5.17

L, =4H +8H +(TH|(20H +12H +10H ))
~.L, =18H
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¢ Example 2:
For the circuit in Figure 5.18,

i()=4(2—e"")mA. If i,(0)=—1mA, find (a)
i, (0), (b) v(2), v;(r) and va(D), (¢) i,(¢) and ix(p).

+ SR [* I g* I
-
z 4H “3 v 12 H

Figure 5.18
(a) Fromi(t)=4(2—e """ )mA,
i(0)=4(2—1)=4 mA
Since I =1, +1,,
i (0)=i(0)—i,(0)=4—(=1)=5mA
(b)  The equivalent inductance is
L, =2+4[12=5H
Thus,

v =L, % = 54)(-1)(-10)e " my
dt

= () =200 mv
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()

and

v () =L,, % =2(—4)(—10)e " mVv

- v, (1) =80e”" mv
Since V=V, +V,,

v, (t) =v(t)—v,(t) =120e""' mv
The current i; 1s obtained as,

. l .
1,(t) = 4 jo v,dt +1,(0)

120 e '"dt +5mA

-10
=3¢

o +5mA
=3¢ +34+5=8-3¢""mA
Similarly,
. 1 :
(1) = 5 JO v,dt +1,(0)

:@ e dr —1mA
22 0

—-10¢
— —€

o —1mA

——e "V 41-1=—""mA
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5.6 Conclusion

Relation Resistor (R) Capacitor (C) Inductor (L)
] ' R H\H.&.T (70) hm_m
D=l V=1 == — l U i SR
C Jy ; dt
: i = v/R e ; H\q dr + i(to)
-V = = = = ] i
! l z = l 7 0
p2 1 1
p Or w: BHMNMHM Eﬂmﬁcm EHMEM
. C1Co
Series: Req = R1+ R Cog = ————— e —= Lk L
eq 1 2 eq Gl eq 1 2
R1R2 LiL;
Parallel: Rea— @ 1 ¢ T
S e g T it Ly
At dc: Same Open circuit Short circuit

Circuit variable
that cannot
change abruptly: - Not applicable v [
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T Passive sign convention is assumed.



